Geology of Facade Stones

Prof LS Chan

- Common stone types
- Geology of special façade stones
- Production process
- Common tests and properties
- Problems encountered
- Inspection and monitoring

Common rock types

- Granite (diorite, gabbro, gneiss): crystalline rock
- Limestone (limestone, travertine): crystalline, carbonate
- Sandstone (sandstone, onyx etc.): clastic, sedimentary
- Marble: crystalline, carbonate
- Volcanics (basalt,...): crystalline
- Slate (slate, phyllite etc.): foliated
- Synthetic stones

Usage:

Interior Exterior Paving stones

'Granites'

Gneiss and metamorphic rocks

Migmatite

Sandstone

Marble and Limestones

Serpentinite

granite

Synthetic Stones

Natural Stones

Rapakivi Granite

- High viscosity melt
- Crystal and melt have similar surface tension

Rapakivi granites

Characteristics

- 1. Geochemically A-type granite
- 2. Ovoids of K-feldspar
- 3. Plagioclase mantle of K-feldspar ovoids
- 4. 2 generations of feldspar and quartz crystallization

Geology Today

<u>Volume 23, Issue 3, pages 114-120, 25 JUN 2007 DOI: 10.1111/j.1365-2451.2007.00616.x</u> <u>http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2451.2007.00616.x/full#f4</u>

Key debates:

- Ovoid forms of feldspar crystals
- Reversed order of crystallisation

What causes the abrupt change in physiochemical conditions?

- Magma mixing
- Sudden change in pressure at constant temperature
- Uneven distribution of melt composition

Issue is still debated.

Larvikite

- A variety of monzonite
- Perthitic feldspar (tenary feldspar; not simply labradorite)
- Schiller effect (result of light being dispersed along the plagioclase and Kfeldspar crystal boundaries)
- Formed in Oslo Rift, Norway, an Igneous complex in lower crust

Oslo Rift, Norway

Permain age gabben system with lower crust igneous complex

Exsolution of K-feldspar and Anorthite

Figure 5. Principle of how iridescence forms in a media, such as feldspar crystals. The reflected light beam (1-2) and the refracted beam (1-3-4) reinforce each other because their phase difference is an integral number of wavelengths. Other wavelengths present in a beam incident at this angle will interfere, resulting in the optical interference colours.

Credit: Geological Survey of Norway

Figure 6. Scanning electron microscope photo of exsolution lamellae in larvikite. Iridescence occurs when the spacing of the lamellae is from 500 to 1000 Å (marginal parts of the photo).

The feldspar is ternary with compositions in the range An (4–30%), Ab (58–82%), Or (3–35 %) (Barth 1945)

Macigno Group, Tuscany

Km

400

Actual and recent clastic deposits Recent and actual volcanoes and associated lavas and tuffs Marine deposits scarcely consolidated, of Oligocene-Miocene age Flysch and marly-arenaceous turbiditic facies · Calcareous and marly-silicoclastic units of pelagic facies Massive carbonatic platforms of neritic facies Undifferentiated and chaotic complexes with prevailing clayey matrix Crystalline and foliated formations Crystalline Magmatic rocks

Conti and Cornamusini, 2013

Turbiditic sandstone in Pacific Place

- Graywacke; lithic sandstone
- High density currents

Limestone with fossils Rosso Ammonitico HKU Senior Common Room

Schlier Fm Bisciaro Fm

Diaspri Fm

📕 500 m

Rosso Ammonitico Fm

Rosso Ammonitico

Credits: Images from open websites

Production of Stone Claddings

Common properties of concern

- Water absorption
- Abrasion resistance
- Compressive strength
- Acid sensitivity
- Specific gravity
- Flexural strength

Stone	Abrasion Resistance	Water Absorption	Acid Sensitivity	Flexural Strength	
Granite	High	Low	Low	High	
Limestone	Low	Moderate- High	High	Medium	
Marble	Low	Moderate	Moderate- High	Medium- High	
Sandstone	Medium	Moderate- High	Low	Low- medium	
Basalt	High	Low- Moderate	Low	High	
Slate	High	Low	Low	High	

Strength Tests (BD APP-16)

Flexural strength

- Characteristic strength = Average strength K × σ; (K = 3.41)
- Characteristic flexural strength > 3 x design allowable flexural strength x Flexural Safety Factor
- FSF: Granite = 4.5; Limestone =7.2; Marble = 6.3

Ageing tests for limestone

• 50 thermal cycles + 50 dry/wet cycles

Stone Type	Typical Flexural Strength Range (MPa)			
Granite	30 - 6			
Marble	22 - 6			
Sandstone	15 - 3			
Limestone	21 - 2			
Slate	50 - 15			

Geological properties

- Mineralogy and composition
- Cracks
- Microfissures and cleavages
- Clay seams and clay contents
- Porosity
- Chemical composition and acid sensitivity
- Iron content
- Expansivity

Problems

- Cracks
- Seams
- Spalling
- Decoloration
- Efflorescence
- Tenting

Spalling, Joint widening, Marly layers

Buckling and Tenting

- Differential swelling
- Shrinkage of substrate

Causes of disintegration

- Anisotropic properties of calcite
- Dissolution of cement

Acid sensitivity

Adverse cracks

Efflorescence

- Salt deposit originated from grout, mortar, material
- Alkalis, Ca- Na- and K- hydroxides or sulfates
- Reaction with air to produce carbonates

How may geological investigation help?

- Structural studies for cracks and fissures
- Clay seams
- Geochemical analysis (XRF)
- Thin section analysis
- Chemistry experiments

Reflection microscopy

	A	В	С	D	E	F	G	Н	I	J	K	L	M
1	XRF Results quantitative. MG: Mystic Grey LAL: Lanhelin							in					
2	Sample	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na2O	K2O	P2O5	LOI	TOTAL
3	name	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
4	MG	46.24	1.60	24.48	7.79	0.09	3.10	12.30	2.47	0.75	0.20	0.23	99.26
5	LA	70.25	0.52	14.81	3.35	0.04	0.91	1.70	3.37	4.34	0.18	0.37	99.84
6													
7													
8													
9	Standard -	Dry Base											
10													
11	BCR-2	53.759	2.361	13.374	13.772	0.157	3.535	7.092	3.484	1.849	0.348		99.73
12	BCR-2	54.1	2.26	13.5	13.8	0.196	3.59	7.12	3.16	1.79	0.35		
13													
14	JG-1A	73.05	0.209	14.31	2.004	0.056	0.697	2.177	3.154	3.975	0.083		99.715
15	JG-1	72.3	0.26	14.24	2.18	0.063	0.74	2.2	3.38	3.98	0.099		
16													
17	GSR-16	50.415	3.316	13.278	13.774	0.19	5.121	8.005	3.303	1.563	0.556		99.521
18	GSR-16	49.88	2.94	13.21	13.4	0.21	5.08	7.83	3.17	1.49	0.55		
10													

Examination of Cladding Panels

- Rock type and origin
- Stone condition
- Susceptibility to weather elements
- Cracks and microfissures
- Crack orientation
- Aperture
- Seepage condition
- Clay filling
- Grouting and mortar condition

Geologist has a role to play:

Facade Stone Geology

Thank You!

/web.hku.hk/~chanls